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Abstract
It is shown that the reduced Maxwell–Bloch equations for circularly polarized
light are integrable by the inverse scattering transform method. A Bäcklund
transformation is given and used to construct a hierarchy of N-soliton
solutions. The breather solution corresponding to the 2π -pulse of self-induced
transparency is discussed in some detail.

PACS numbers: 02.30.Ik, 42.50.Md, 42.65.Tg

1. Introduction

The phenomenon of self-induced transparency [1, 2] has been successfully described by
a slowly varying envelope approximation (SVEA) of the Maxwell–Bloch equations. The
so-called SIT equations resulting in this way are integrable by the inverse scattering
method [3, 4] even taking into account inhomogeneous broadening of the atomic resonance
frequencies. Eilbeck et al [5] proposed a more accurate approximation called reduced
Maxwell–Bloch (RMB) equations. They avoided SVEA and—as a weaker assumption—
neglected a backscattered wave. For plane polarized waves it has been found that the RMB
equations are integrable as well and, just as the SIT equations, are connected with a Zakharov–
Shabat scattering problem.

On the basis of the SIT equations there is—from the mathematical point of view—no
difference in principle between the treatment of a circularly polarized wave and a plane
polarized one interacting with the appropriate atomic systems. The same does not hold for
the RMB equations, and one can find in the literature the statement that “the rotating RMB
equations . . . do not have soliton solutions and are not an integrable system” [6]. In this paper
it is demonstrated that the rotating RMB equations—in the sharp-line limit, at least—are an
integrable system and do have soliton solutions. They are not, however, connected with a
Zakharov–Shabat but with a Kaup–Newell scattering problem [7].
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For the whole subject of Darboux and Bäcklund transformations together with their
differential-geometric background, their origins in the 19th and early 20th centuries and a
rich field of applications, we refer the reader to the book by Rogers and Schief [8]. Crum [9]
expressed an N-fold Darboux transformation for the Sturm–Liouville problem (or Schrödinger
equation) in terms of Wronskian determinants. Later on similar procedures were developed
for the scattering problems of Zakharov–Shabat and more general types [10–14]. Here
Vandermonde-like determinants appear instead of Wronskians.

In section 2 we rederive the rotating RMB equations and set them in an appropriate
form. In section 3 we establish a simultaneous system of linear differential equations such
that the rotating RMB equations appear as the integrability conditions and where the τ -part
takes the form of a Kaup–Newell scattering problem. The construction of an N-fold Bäcklund
transform in section 4 parallels the procedures developed in preceding papers [15–17]. The
connecting link is the Kaup–Newell problem. The simplest solutions of the resulting hierarchy
are discussed in section 5, where, in particular, we see that the breather solution corresponds
to the 2π -pulse of self-induced transparency just as this has been long known for the RMB
equations with plane polarization [5]. The notation of Vandermonde-like determinants as used
in this paper is explained in the appendix.

2. Maxwell–Bloch and reduced Maxwell–Bloch (RMB) equations

We consider an electromagnetic wave propagating in the z-direction and interacting with a
nondegenerate two-level system. To dissolve degeneracy a static magnetic field is applied in
the z-direction. For definiteness we may think of a dipole transition (J = 1/2,M = −1/2) ↔
(J = 1/2,M = +1/2), where J is the total angular momentum, and M is its z-component. In
this paper we will not take into account inhomogeneous broadening, so that there is a common
resonance frequency ω0 for all atoms. The Maxwell–Bloch equations for this system may be
written as follows:(

∂2
z − 1

c2 ∂2
t

)
Ex = 4πdn

c2 ∂2
t Rx(

∂2
z − 1

c2 ∂2
t

)
Ey = 4πdn

c2 ∂2
t Ry

(1)

∂tRx = −ω0Ry − 2d
h̄
EyRz

∂tRy = ω0Ry + 2d
h̄
ExRz

∂tRz = 2d
h̄

(RxEy − RyEx).

(2)

Here Ex and Ey are the electric field components, and (Rx, Ry, Rz) is the Bloch vector. c is the
velocity of light in vacuum or, more generally, in the host medium, and d is the dipole moment.
The second-order differential operators on the left-hand sides of (1) may be factorized, and as
the crucial approximation [5] the factor (∂x − (1/c)∂t ) is replaced by −(2/c)∂t . Afterwards
one may integrate once to get

(c∂z + ∂t )Ex = −2πdn∂tRx (c∂z + ∂t )Ey = −2πdn∂tRy. (3)

The combined equations (2), (3) then are the RMB equations for a circularly polarized wave.
From them—in a formal sense only—one may get the RMB equations for a plane polarized
wave by ignoring the second of equations (3) and putting Ey = 0 in (2). The essential
difference is that in the latter case one may get rid of the time derivative of Rx by use of
∂tRx = −ω0Ry , while for circular polarization such a possibility does not exist.
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We introduce characteristic coordinates χ, τ together with a proper scaling,

χ = (4πd2n/h̄c)z τ = ω0(t − z/c) (4)

Ex,y = (2d/h̄ω0)Ex,y (5)

and we combine the x- and y-components by a complex notation,

E = Ex + iEy R = Rx + iRy. (6)

Finally we write down a more general system of partial differential equations for five functions
(E, F,R, S,Rz),

∂τR = i(R + ERz)

∂τS = −i(S + FRz)

∂τRz = i
2 (RF − SE)

∂χE = −∂τR

∂χF = −∂τS

(7)

such that together with the reduction F = E∗, S = R∗, Rz real it becomes equivalent to (2),
(3). The asterisk denotes complex conjugation.

3. The linear system, Riccati equations and Darboux/Bäcklund transformations

We are starting from the system (7) where (E, F,R, S,Rz) are considered as independent
functions of χ and τ with no reduction so far. Obviously, there are two conservation laws,

∂τ

(
RS + R2

z

) = 0 (8)

∂χ(EF) + 2∂τRz = 0. (9)

Equations (7) are the integrability conditions for the simultaneous linear partial differential
equations

∂τφ = Uφ U ≡ 1

2

(
−iζ 2 Eζ

Fζ iζ 2

)
(10)

∂χφ = V φ V = −ζW

2(1 + ζ 2)
(11)

W =
(

iζRz R

S −iζRz

)
(12)

where φ = (ϕ1, ϕ2)
T denotes a two-component column vector. Equation (10) has the form

of a Kaup–Newell scattering problem [7]. From (10)–(12) one may easily derive a system of
Riccati equations for the quotient β(χ, τ) = ϕ2/ϕ1,

∂τβ = iζ 2β + ζ(−Eβ2 + F)/2 (13)

∂χβ = ζ

(1 + ζ 2)
[iζRzβ + (Rβ2 − S)/2]. (14)

Then the RMB equations (7) as well are integrability conditions for the simultaneous Riccati
equations (13), (14).

Reduction. If F = E∗, S = R∗, Rz real and ζ, β solves (13), (14) then ζ ∗, 1/β∗ is a solution
as well.
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In order to establish a Bäcklund transformation we assume that for a given solution
{E,F,R, S,Rz} to (7) one particular solution {β1(χ, τ ), ζ1} to (13), (14) is known, and
we define the matrix

M = M(ζ) =
(

ζβ1 −ζ1

−ζ1 ζα1

)
α1 ≡ 1/β1. (15)

Note that in (10), (13) the variable χ does play the role of a parameter and, vice versa, in
(11), (14) τ is a parameter only. Let us, for a moment, ignore these parameters and formulate
two theorems giving Darboux transformations for the scattering problems (10) and (11),
respectively.

Theorem 1 [15]. From any solution {φ(τ), ζ, E(τ), F (τ)} to (10) a new solution
{φ[1](τ ), ζ, E[1](τ ), F [1](τ )} is found by the Darboux transformation

φ[1] = Mφ

E[1] = β1(β1E − 2iζ1) (16)

F [1] = α1(α1F + 2iζ1).

Theorem 2. From any solution {φ(χ), ζ, R(χ), S(χ), Rz(χ)} to (11) a new solution
{φ[1](χ), ζ, R[1](χ), S[1](χ), R

[1]
3 (χ)} is found by the Darboux transformation

φ[1] = Mφ

R[1] = (
ζ 2

1 + 1
)−1(

β2
1R + 2iζ1β1Rz + ζ 2

1 S
)

(17)
S[1] = (

ζ 2
1 + 1

)−1(
α2

1S − 2iζ1α1Rz + ζ 2
1 R

)
R[1]

z = (
ζ 2

1 + 1
)−1(

iζ1(Rβ1 − Sα1) +
(
1 − ζ 2

1

)
Rz

)
.

Both these theorems may be proved by direct verification. When—as above it has been
originally assumed—β1(χ, τ ) solves both (13) and (14) with ζ replaced by ζ1 these
same formulae (16), (17) together define a Bäcklund transformation. It is easily seen
that the reduction F = E∗, S = R∗, Rz real is conserved under the Darboux/Bäcklund
transformations.

It has been found [15] and is not difficult to check that Darboux transformations in the
sense of theorem 1 commute.

4. The N-fold Darboux/Bäcklund transform

Now we return to the spectral problem (10) (with no reduction so far). If φ1 ≡ (ϕ11, ϕ21)
T

solves (10) with ζ = ζ1, then β1 = ϕ21/ϕ11 solves (13) with ζ replaced by ζ1, and
for the matrix defined by (15) it holds M(ζ1)φ1 = 0. Now we assume that N solutions
{φj , E, F, ζj }, j = 1, . . . , N , to (10) are known. The wavefunction of the N-fold Darboux
transform is an Nth-order polynomial in ζ ,

φ[N] = M [N](ζ )φ M [N](ζ ) ≡
N∑

k=0

Pkζ
N−k. (18)

From M(ζ1)φ1 = 0 together with commutativity, it follows that

M [N](ζj )φj = 0. (19)

From the iteration of (15), (16) the coefficients Pk get the structure

P2l−1 =
(

0 p2l−1

s2l−1 0

)
P2l =

(
p2l 0
0 s2l

)
pN = sN = const. (20)
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Equation (19) decomposes into two separate systems of linear equations for the coefficients
pk and sk , respectively, and these two systems may be solved according to Cramer’s rule. We
have to distinguish whether N is odd or even. In order to conserve space we will treat the case
of even N only and put N = 2n, p2n = s2n = −1,

n∑
l=0

p2lζ
2(n−l)
j +

n∑
l=1

p2l−1ζ
2(n−l)+1
j βj = 0 (21)

n∑
l=0

s2lζ
2(n−l)
j +

n∑
l=1

s2l−1ζ
2(n−l)+1)
j αj = 0. (22)

For later use we will write down the coefficients p0 and p1 explicitly, and we will use the
notation of Vandermonde-like determinants (see the appendix),

p0 = (−1)n
Vnn

(
1 . . . 1; ζjβj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjβj

∣∣ζ 2
j

) (23)

p1 = Vn+1,n−1
(
1 . . . 1; ζjβj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjβj

∣∣ζ 2
j

) . (24)

To obtain s0 and s1, one only needs to replace the letter β by α in (23), (24). More generally
it holds

sk = pk(α −→ β). (25)

Let us write the transformed spectral problem in the form

∂τφ
[N]
τ = U [N]φ[N] ≡ (J ζ 2 + Q[N]ζ )φ[N] (26)

using the abbreviations

J ≡
( −i 0

0 i

)
Q[N] ≡

(
0 E[N]

F [N] 0

)
. (27)

Substitution of (18) into (10), (26) and comparison of powers in ζ lead to

[P0, J ] = 0
[P1, J ] + P0Q − Q[N]P0 = 0
∂τPk−1 + [Pk+1, J ] + PkQ − Q[N]Pk = 0 k = 1, . . . , N − 1
∂τPN−1 + PNQ − Q[N]PN = 0.

(28)

and from the second equation of this system we get

E[N] = p0E + 2ip1

s0
F [N] = s0F − 2is1

p0
. (29)

The above formulae determine the N-fold Darboux transformation. When we ‘switch on’
the time t we know from section 3 that each of the N single-transformation steps becomes a
Bäcklund transformation, i.e. it transforms the simultaneous system (10), (11) with preserving
its form. Consequently, our result gives the N-fold Bäcklund transformation as well. Explicit
formulae are available for the matrix elements of M [N] as defined by (18), (20). For this
purpose we only have to read, e.g., (21) together with M

[N]
11 = ∑

p2lζ
2(n−l) as a linear system

of equations for p1, . . . , p2n−1,M
[N]
11 with p2n = −1 and to recognize that the solution again

can be expressed in terms of Vandermonde-like determinants. In this way we find

M
[N]
11 (ζ ) = −Vn+1,n

(
1 . . . 1;βjζj , 0

∣∣ζ 2
j , ζ 2

)
Vn,n

(
ζ 2
j ;βjζj

∣∣ζ 2
j

) (30)
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and, quite analogously,

M
[N]
12 (ζ ) = −Vn+1,n

(
1 . . . 1, 0;βjζj , ζ

∣∣ζ 2
j , ζ 2

)
Vn,n

(
ζ 2
j ;βjζj

∣∣ζ 2
j

) (31)

M
[N]
21 = M

[N]
12 (β → α) M

[N]
22 = M

[N]
11 (β → α). (32)

The transformation law of the matrix function W is found as

W [N] = (−2(ζ + 1/ζ )M [N]
χ + M [N]W

)
[M [N]]−1 (33)

or, if we fix ζ = i,

W [N](i) = M [N](i)W(i)[M [N](i)]−1. (34)

From this last equation we easily obtain the transformation law of the atomic state,

R[N]
z = ((M11M22 + M12M12)Rz + M11M21R − M12M22S)/D (35)

R[N] = (
M2

11R − M2
12S + 2M11M12Rz

)/
D (36)

S[N] = (−M2
21R + M2

22S − 2M21M22Rz

)/
D (37)

D ≡ M11M22 − M12M21 Mik ≡ M
[N]
ik (i). (38)

If now we choose the reduction F = E∗, S = R∗, Rz real, we have to take the eigenvalues as
real or as pairs of complex conjugate values and to choose

(i) |βj | = 1 for real ζj or
(ii) βl = 1/β∗

k = α∗
k when ζl = ζ ∗

k .

Then we get sj = p∗
j . Consequently, the required symmetry is conserved.

5. Examples

5.1. Harmonic waves (N = 1)

In three foregoing papers [15–17] referring to the Kaup–Newell scattering problem, it has
been found that the application of a one-step Bäcklund transformation on the vacuum state
does not yield a soliton but a harmonic wave, and this happens here as well. From (16), (17)
with the vacuum E = F = R = S = 0, Rz = −1 as the seed solution and with real ζ1, we
get the wave

E[1] = −2iζ1β1 F [1] = E[1]∗

R[1] = E[1]
/(

ζ 2
1 + 1

)
S[1] = R[1]∗ (39)

R[1]
z = (

ζ 2
1 − 1

)/(
ζ 2

1 + 1
)

β1 ≡ exp
[
iζ 2

1

(
τ − χ

/(
1 + ζ 2

1

))]
. (40)

It has been observed already by Bullough et al [6] that for the rotating RMB equations there
is such a harmonic wave instead of a sech solitary wave solution.
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5.2. The breather (N = 2)

Again we start from the vacuum. Now we choose N = 2, ζ1 = iρ exp(iϕ), ζ2 = ζ ∗
1 , β2 = 1/β∗

1
with β1 given by (40). We define real linear functions θi(χ, τ ), θr (χ, τ ) by

θi − iθr ≡ ζ 2
1

(
τ − χ

/(
1 + ζ 2

1

))
. (41)

or

θr = τ sin 2ϕ − (χ/2) cot ϕ (42)

θi = −τ cos 2ϕ − χ/2. (43)

Then it holds

β1 = exp(iθi + θr), (44)

and from (29), (35), (36) we get

E[2] = −2iρ sin(2ϕ) e−iθi
cosh(θr + iϕ)

cosh2(θr − iϕ)
(45)

R[2]
z =

[
cos2 ϕ − sinh2 θr

cos2 ϕ + sinh2 θr

− 1

4
(ρ − 1/ρ)2

] / [
1 +

(
ρ − 1/ρ

2 sin ϕ

)2
]

(46)

R[2] = 2 sin(2ϕ) e−iθi
cosh(θr − iϕ) − ρ−2 cosh(θr + iϕ)

cosh2(θr − iϕ)[(ρ − 1/ρ)2 + 4 sin2(ϕ)]
. (47)

Equations (41)–(47) define the general complete breather solution. From (45) we find a rather
simple formula for the pulse shape,

|E[2]|2 = 4ρ2 sin2(2ϕ)

sinh2(θr) + cos2(ϕ)
. (48)

From (46) we see that the maximum value of R[2]
z is achieved at θr = 0 and that it is equal

to 1 for ρ = 1 but is less than 1 otherwise. From the physical point of view, according to
our scaling (5), it is realistic to assume |E[2]| � 1, i.e. |ϕ| � 1. Now we will consider the
breather under these specifications, ρ = 1, |ϕ| � 1, and take series expansions with respect
to ϕ,

θi = χ/2 − τ(1 − ϕ2) + O(ϕ3) (49)

θr = −2ϕτ − (χ/2ϕ)(1 − ϕ3/3)) + O(ϕ3) (50)

E[2] = 4iϕ e−iθi sech θr(1 + 3iϕ tanh θr) + O(ϕ3) (51)

R[2]
z = −1 + 2sech2 θr(1 − ϕ2 tanh2 θr) + O(ϕ3) (52)

R[2] = 2e−iθi sech θr tanh θr(1 + 2iϕ tanh θr) + O(ϕ2). (53)

The solution described by (49)–(53) is the usual 2π -pulse of SIT with slight next-order
corrections. In particular, we see that (51) contains a weak chirp. In a sense our result once
more proves that the SIT equations are a rather good approximation.
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6. Summary and conclusions

We have shown that the rotating RMB equations are integrable by the inverse spectral transform
method and that this is another application of the Kaup–Newell scattering problem. In a paper
in preparation [18] it will be shown that, more generally, an anisotropy of the polarizability can
be included without destroying integrability. In this paper we used Bäcklund transformations
to establish N-soliton formulae in terms of Vandermonde-like determinants. It has been
demonstrated in recent papers [15–17] that such formulae are well suited for numerical
evaluation and for generating computer pictures up to N = 8, at least. Clearly, this could
be done in the present case as well. Instead, here we discussed only the breather solution
(N = 2) which corresponds to the 2π -pulse of the SIT equations. So far, qualitatively the
situation is the same as is known for the RMB equations with plane polarization. There is,
however, an important difference with respect to inhomogeneous broadening which is easily
taken into account for plane polarization but, probably, cannot be included for the rotating
RMB equations without losing integrability.
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Appendix. Vandermonde-like determinants

Vandermonde-like determinants are defined as follows [14],

VMN(ar; br |xr) :=∣∣∣∣∣∣∣∣∣∣

a1 a1x1 · · · a1x
M−1
1 b1 b1x1 · · · b1x

N−1
1

a2 a2x2 · · · a2x
M−1
2 b2 b2x2 · · · b2x

N−1
2

...
...

...
...

...
...

...
...

aM+N aM+NxM+N · · · aM+NxM−1
M+N bM+N bM+NxM+N · · · bM+NxN−1

M+N

∣∣∣∣∣∣∣∣∣∣
(A1)

where r = 1, 2, . . . , M +N . These determinants have several remarkable structural properties
listed in [14]. In particular, any Vandermonde-like determinant VMN can be expressed as a
sum over binary products of genuine Vandermonde determinants VN .
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